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We have studied the scalar ¢*-model in the symmetric phase near
the phase transition and the non-compact (1) gauge theory on
a momentum lattice using the Langevin equation for generating
configurations. In the ¢*model we have cormnputed the renormalized
mass and in the W1)-model we have computed the Wilson loap
operator. We used a second-order algorithm for solving the
Langevin equation, and we studied the convergence rate of the
method. We [ooked at the stochastic time needed to generate egui-
librium configurations and compared first- and second-order
schemes for both models. © 1995 Academic Press, Inc.

1. INTRODUCTION

One major problem in lattice gauge theory has been the
increased amount of computer time and memory needed to do
simulations near a critical point. The so-called critical slowing
down can be countered, e.g., with the Fourier acceleration
method [1]. Other methods have been developed, e.g., the clus-
ter algorithm {2], which is very successful to accelerate conver-
gence at the critical point for Ising-type systems. When we
studied the scalar ¢*-model near the critical point on a momen-
tum lattice [3], 1t turned out that quite reasonable results for
the renomalized mass, wave function renormalization, etc.,
could be obtained on relatively small lattices (3*~7%). In this
note we want to report a more detailed numerical analysis of
the convergence behavior on a momentum lattice,

2. MOMENTUM SPACE

Momentum space has several interesting advantages over
coordinate space:
* The kinetic energy of the action is local.

* One can implement Fourier acceleration to fight critical
slowing down.

* At the critical point, the correlation length goes to infinity.
The behavior at x — 0 in coordinate space corresponds to k —
0 in momenium space.

* The correlation function in momentum space behaves as
1/(m3 + k% near the critical point. At the critical point, my —
0, but one can stay away from the pole by choosing some &% # 0.

+ Although the action in momentum space is non-local, one
can use a fast Fourier transform to switch to coordinate space,
where the interaction is local.

3. STOCHASTIC QUANTIZATION

We have used stochastic quantization, which is a practical
method to go from the continuum formulation to algorithms
for numerical simulations. We have studied the ¢4, mode! and
the non-compact U(1);,, gauge model. Stochastic quantization
was introduced by Parisi and Wu [4], and it has been applied
by many authors (for a review see Damgaard and Hiiffel {5,
6]). The idea is to consider the BEuclidean quantum field as
the equilibrium state of a statistical system coupled to a heat
reservoir. Parisi and Wu have introduced a fifth coordinate 7,
called stochastic (fictious) time. The evolution of this statistical
system in stochastic time is described by a Langevin equation.
To be more specific, let us consider the scalar ¢4, model in
its Euclidean form. Its action reads

1 2
Se= [ d% 58,000,800 + T 0 + £ 0. ()

The Langevin equation, governing the evolution reads

dd(x, 85
qs(a),cr ) == 5¢[((f)] ,Mx):fﬁ(&ﬂ + nlx, 7).

(2)

Here n(x, 7) is a field of Gaussian noise obeying
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{n(x, ), =0,

3
(", 7)mlx, 7)), = 280x — x)B(7' — 7).

The average { ), is defined by a functional integral over the
noise with a Gaussian distribution

_ I DOl exp[—4 [ d'x d7 7z, )
I Dyexpl—} [ dix dri(x, D)

(Olnl), {4)

Our goal is to solve the Langevin equation many times to
generate a good representation of the statistical ensembie. This
generates the field ¢{n] as a functional of the noise m. In order
to obtain the vacuum expectation value of a physical observable
one performs the average of the desired observable, according
to Eq. (4). The relation between stochastic quantization and
quantization by functional integrals is expressed by the follow-
ing central result of stochastic quantization: When 7-+ ® the
statistical system is ‘‘equal’’ to the Euclidean field; i.e., the
stochastic n-point correlation function coincides with the Eu-
clidean n-point correlation function

lim (lx, Dind -~ Plx,, Db, =

(Plx = Pl )

4. MOMENTUM SPACE AND LATTICE
REGULARIZATION

Via a Fourier transformation

Bt = [ 2K expl-ikvlpiz, ), ©)

2my

the action (1} is transformed into momentum space
1l d%

2} 2y

d'% d'p dq
@) (277)" (27)*

(& + m) k)b —k)

(7
HOYPIH Pk — p — ).

The Langevin equation corresponding to Eq. (2) reads in mo-
mentum space

k. 7) _ as(l X
_a_'r— -2 == 5¢( 1 | g-tymic-i) + K, T). (%)
Here #(k, ) is the field of Gaussian noise obeying

(k. ), = 0,
(A", 70k, TN, = 2Q2a ) 8K + BT — 7).

)

We regularize the field theory by introducing a momentum
lattice, being a regular hypercube in four dimensions. It is
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characterized by a resolution Ak and an ultraviolet cutoff A.
Lattice sites are denoted by %;. The action on the momentum
lattice is obtained from Eq. (7). Note that the original noise
field has a delta function normalization with respect to coordi-
nates and stochastic time. In order to solve the Langevin equa-
tion numerically, one has to discretize also the stochastic time
7, by introducing a step size A7, Then in order to normalize
the noise to a Kronecker delta function, one introduces the
rescaled field and noise

2
Plky, T, = (%,’f) Py, 7.),

(10
Whr, 7) = (A2 ( ") ks, 7).
The noise obeys now
(ﬁ(k.n Tu)n(kh Tb)> 28k1+k 067 Ty (1 1)

Thus the Langevin equation (8) can be written as a first-order
iterative scheme

()E(kh Ta + AT) = (1 - AT(ka' + mg))&—(kh Ta)

Ak - . -
- Afi 5‘ (_2?) ks TPy, T2) Plhy — Ky — ku, 7)

+ VA7 Ak, 7). (12)

In a similar way one can set up a second-order scheme (second-
order Runge—Kutta). This equation has to be solved for a large
number of configurations of noise. Finally, one has to take the
average over the statistical ensemble. The expectation value of
an observable is defined by

e D1, s
OLgl = lim~ [ dv Ol d(7). (13)

Because we suppose that our system is ergodic, the expectation
value can be computed by summing over the configurations,

(Ol 1y = lim }2 O[,].

n=l

(14)

Let N denote the size of the statistical ensemble, 1.e.. the number
of throwing a dice but with Gaussian distribution for each
lattice momentum %, i.e., the number of configurations of noise.
One must solve the Langevin equation N times in parallel,
which can be done using a parallel processor. This yields the
field ¢ being a functional of the noise %. Then one computes
the expectation of an observable by taking the average over
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the statistical ensemble, i.e., by summing over the field configu-
rations. The number of configurations of noise, which have
been used in the numerical simulations varies between N =
301,420 for the ¢* model on the 3* laitice and N = 256 for the
U(1) moedel for the Wilson loop (see details below).

5. NUMERICAL ASPECTS

The momentum lattice and the Langevin algorithm is charac-
terized by the following set of parameters:

(a) Size of lattice L? (L — o).

(b) Lattice resolution Ak and ultra violet lattice cutoff A
(CA = (L — DAL, (Ak— 0, A — o).

(c) Order of scheme to solve stochastic differential equation.
(d) Step size At (Ar— 0).
(e) Finite upper limit 7oy, (Toa — ).

(f) Size of statistical ensemble, i.e., the number N of config-
urations of noise (N — o),

We have indicated in parenthesis to which limit these parame-
ters should tend in the continuum limit of the theory.

In a numerical simulation, one has to test stability of the
results with respect to variation of those parameters. The
Langevin equation is a first-order differential equation that we
integrate up to a final value Ty, by increments of Ar. The
need to choose a large value for .. can be seen from the free
scalar model {obtained by putting g = 0 in the action, Eq. (1)).
The Euclidean Feynman propagator (two-point function) for
the free scalar theory reads

1

(GG = 27) Bk + K G -

(15)

The Euclidean propagator in stochastic quantization with con-
tinuous stochastic time 7 is given by [6]

sk + ")

KA+ m?

X [exp{~ |7 — 7|(& + m®)}
—exp{— (7+ ™Y + mH}].

(tk, PPk, 1) = (2my*

(16)

We can see that one must choose 7 = 7 = T, and 7, (K +
m?)) must be large enough to make the second exponential term
negligible. It should be noted that this corresponds to a solution
of the Langevin equation with the boundary condition ¢k, 7=
0) = 0. Other boundary conditions may give different results
for finite 7, 7', but will give the same result in the limit 7 =
7= o,

This holds for the case of continuous momenta and stochastic
time. There is no need to introduce a finite At. However,
when we consider the ¢* model on the momentum lattice and
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discretize stochastic time, we have to introduce a finite A and
we have to choose it to be small. It turns out that one cannot
vary both 73, and At independently. This can be seen as
follows: Again we look at the free scalar model, on the momen-
tum lattice with discrete stochastic time, corresponding to the
Langevin Eq. (12) with g = Q,

L B = -AB(w) + @ (). an

Here A/A 7 stands for the finite difference operator and Afk) =
Kt 4+ m?. Let us suppress the k-dependence for the moment. In
particular we are interested in the solution with the boundary
condition

d(r, = 0)=0. (18)
The Green’s function G is defined as the solution of
A -~ ~
—G(1) = —AG(T) + 6. 5. {19
At a

Then the general solution of Eq. (17) can be expressed as

1) = 2. [G(r, — m) - G(— m)d™ (THI(A D 5(7,) .
. (20)

+ const X $™(1,),

where @™ satisfies the homogeneous equation corresponding
to Eg. (17). The Green’s function can be computed via a discrete
Founier transformation

fir)=2 %’ expli1,0,]f(.) (21)

and yields

Gz = Z é—;cxp[ifam] (A T/ (A + fﬁ—n%)) . 22)

%

The solution of the homogeneous equation in continuous sto-
chastic time reads ¢™(7) = exp{—Ar}, which corresponds to
the boundary condition J)‘“”“(T = () = 1. Then the homogeneous
solution in discrete stochastic time can be expressed as

¢™(7,) = exp[-Ar][l + OAD)]. (23
Now we can compute the two-point function (propagator) corre-
sponding to the boundary condition (18), which requires
const = 0 in Eq. (20),
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( Mk, 7y Plhy, 7)) = 2 By 1z 0 (AT

X Y (G, 7 — ) — Gl — Tk, 7)) (24)

X [G(_kl! To — Tm) - G(_kh - Tm)éhom(_k;, Tﬁ)]-

There are four terms in the square brackets, yielding

(&’(kh Ta)&(kh Tb)) = 2 akﬁk_,.(} z _g;o-

[ expli(r, — n)oy]
(m* + K + sin’(A7o,)/ AT

explit.o,]

TR T R+ sinkAroyAn O ke )

2%

ﬁ expl—i7,o,]
(m* + kY + sin(Aro, M AT

2 (}hom(kh Ta)

1
+
(m? + kY + sin¥{Aro, )/ A7

&hom(kr, T«)%”"“‘(—k;, Tb)] -

Now we can see what happens when we approach the contin-
uum limit in Eq. (25): When we first go to the limit At — 0,
Ao — 0, and evaluate the integrals via the residue theorem,
we obtain the expression given by Eq. (16). Then taking the
limit 7, = 7, = T,y — @, and finally let Ak — 0, we obtain
the continuum result for the propagator, given by Eq. (15). If,
however, we keep A 7fixed and let 7,, 7, — oo, then the propaga-
tor starts to oscillate after a while due to the presence of the
sin term in the denominator of Eq. (25). Thus we expect the
following behavior of comrelation functions as a fucntion of
Tonat and A7 (the parameter 1/m can be chosen to set the scale
for 7). For fixed AT, the correlation function varies strongly
for small 7,4, then reaches a region of small variation (plateau
region) and then starts to oscillate for large 7y,.. For ancther
smaller value of Ar, one expects a wider size of the plateau
region. This behavior is actually seen in the numerical data:
First, we show in Figs. 2a, b, ¢ the renormalalized mass of the
¢' model as a function of 7,y. We have varied At: At = 1.0,
0.5, 0.25. We have compared a first order with a second-order
algorithm. The latter uses the interval A7/2 to estimate the
functional increment compared to the former which uses the
interval A7. For A7 = 1.0, we observe fluctuations when vary-
ing The. When going to A7 = 0.5 and A7 = 0.25, the fluctua-
tions disappear and a plateau region is formed. Second, we
show in Figs. 4 and 5 the Wilson loop for the U(1) model. The
difference between the two figures is just the value of Ar: The
value corresponding to Fig. 5 is smaller by a factor 1.5 then
the value corresponding to Fig. 4. The data of Fig. 5 show a
better agreement with the analytical results than those of Fig. 4.

Before discussing in more detail the numerical results, let
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us define the physical observables which we have computed
in the ¢' model: The renormalized mass m; and the wave
function renormalization Z; are defined via the connected 2-
point function (after splitting off the factor (27)*&(k.om)),

Z

Gl = (HON~am = =T o (26

The values of my and Z; have been extracted by doing a quartic
fit of the inverse propagator

[G(B)]™ = A + Bk + Ck". @7)

Finally, in order to compare our results with Liischer and Weisz’
results [7], we have reparametrized the bare parameters m, g
of the action and rescaled the field ¢, in terms of «, A, and ¢,
X)) = V2ke(x),
m*=(1—2A)/x -8,
g = 6A/K%.

(28)

Liischer and Weisz have studied the ¢* model in the symmetri-
cal phase close to the phase transition and computed the renor-
malized coupling constant, renormalized mass, and wave func-
tion renormalization. They have used the hopping parameter
expansion up to 14th order (expansion of the functional integral
on the space time lattice in terms of the kinetic term), which
allowed them to approach x — x by 95%. Then they used
renormalization group equations to extrapolate this to the criti-
cal line.

The Langevin equation can be solved using a standard
method like Euler’s method where the truncation term is Q(A7°),
or a higher order scheme like Heun’s method {second-order
Runge—Kutta), where the truncation term is (X(A7°). Batrouni
et al. [1] have shown that a higher order integration scheme
has many advantages, and our experience [3] agrees with theirs.
For the same level of error, Heun’s method is faster; it takes
fewer stochastic time steps, For the same stochastic time step,
it was 46% slower for the ¢*-model, but in the case of the non-
compact U{1)-model it was only 12% slower; in the case of
the ¢*-model, the second-order scheme required the evaluation
of two additional fast Fourier transforms, but in the case of the
U(1)-model onty a few more additions and multiplications were
required. In Fig. 1 we display for the ¢*-model the behavior
of the renormalized mass m; in the neighborhood of the critical
point and compare it to the results obtained by Liischer and
Weisz. Our results correspond to a 3° lattice, where we have
used N = 301,420 configurations of Gaussian noise and to 2
7¢ lattice, where we have used N = 17,920 configurations of
noise. We have used the parameter A = 0.00345739, Eq. (28),
and the lattice spacing Ak = 1. We want to point out that we
are quite close to the critical line, the renormalized mass my
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FIG. 1. Renoarmalized mass m, of the ¢*-model versus coupling parameter

x. The semti-analytical results are taken from Lischer and Weisz, Ref. [7].
The full curve is a fit to Lischer and Weisz's results using the scaling behavior
predicted by the renormalisation group at the critical point [7].

is quite small, and, hence, the two-point function is strongly
dominated by small momenta. .

We have plotted in Figs, 2a, b, ¢ the renormalized mass mi,
as a function of 7,y for different values of A7 computed on a
lattice of 3* points. We have used N = 1024 configurations of
noise. The calculation corresponds to a coupling parameter k =
0.12025, while the critical point is at «, = 0.1257(1). The
parameters A and Ak are as in Fig. 1. The results corresponding
to A7 = 1.0 are shown in Fig. 2a. There are fluctuations for
all values of 7. When going to At = 0.5 (Fig. 2b), one
observes a region of stability 15 = 7, = 25 being formed,
and fluctuations are seen for 7, = 235. However, these fluctua-
tions are less pronounced than those corresponding to At =
1.0. Finally, the results corresponding to Ar = 0.25 are shown
in Fig. 2c. One observes a region of stability 22 < 7, = 32,
and the Auctuations are smaller than in the previous two cases.
Also, one observes the results corresponding to the first-order
algorithm approaching those of the second-order algorithm,
when AT becomes smaller.

6. NON-COMPACT U/(1) GAUGE THEORY

The Euclidean action for non-compact U(1) gauge theory is
given by
i
s=3 | a5 0F ), (29)

where
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is the field strength tensor and A,, is the gauge field. In momen-
tum space the action takes the form

17 d% - A
=— | o FullF (= k),
4 2y # 31)
17 d% - P
=3 mAu(k)szw(k)A L~k
where
T, k)y=8,,— (k‘“k,,)l.r’ct2 (32)

is a projector on the transverse gauge field. This model of non-
interacting non-compact gauge theory is analytically solvable.
Thus this model can serve as a numerical test of the stochastic
quantization method for a gauge theory. The action, Eq. (29),
is invariant under local U(1) gauge transformations, Let us
recall what happens with gauge symmetry in the stochastic
quantization method [4, 5]. In path integral quantization, using
perturbation theory, one has to fix the gauge. Non-perturba-
tively, a gauge fixing condition is in general not unique, which
leads to the so-called Gribov ambiguity problem. In stochastic
quantization, gauge fixing is not necessary and, hence, avoids
the Gribov problem, which was one of the incentives by Parisi
and Wu [4]. One finds that gauge dependent quantities, like
the photon propagator of the Maxwell field (see Eq. (33)),
diverge when 7 — . One the other hand, gauge independent
observables, like the field tensor or its correlation function (see
Eq. (34)) are free of such divergence and tend to the usual
answer, when 7 — . One obtains for the two-point function

(A, DALR', T) = Qay'Sk + k')
(33)

[TFV%(I — exp(—2k*1)) + ZLW,'T],

where L, = 8,, — T, is the projector on the longitudinal gauge
field. That implies for the correlation function of the field tensor

(P Kk TV (K, T)

= (2my'8k + k(1 ~ exp(-vzk%-))% (34)
X fkykoBp — kyB,p — KuknBrg + kK,5,0]
and, hence,
lim (F ok, DF (K, 1)) = 6Q2m) 8k + k). (35)
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FIG. 2, (a) Renormalized mass m, of the ¢"-model versus stochastic time Ti. AT = 1.0. (b) Same as (a), but A7 = (1.5. (¢) Same as (a), but A7 = 0.25,

This gauge theory can be discretized on a momentum lattice
like the scalar ¢* theory. The action reads

b

i

U (AR 2 os
Z% (EE) Fule) o~k
(36)

It

1 AkY . 2 :

_2_ zki: 517— A,u (kf)ki fpv(kI)A v(_kl)'

What happens with gauge symmetry? The non-compact U(1)
gauge theory can be formulated on a standard space—time lat-
tice, such that gauge symmetry is manifestly conserved on a

finite lattice. We define a local gauge transformation on the
momenfum lattice by

ﬁp_(ks) - AL(ks_) = A, (k) + (k)X K- (37}

Then the field tensor .(kr) and the action, Eq. (36), are invari-
ant under this transformation,

We have done a numerical simulation via stochastic quantiza-
tion on the momentum lattice. We have evaluated the expecta-
tion value {F,,F,,). We have used Ak = 2u/La as lattice spac-
ing, where @ = 1 the lattice spacing of the space-time lattice
and L is the number of sites in each dimension. In Fig, 3 we
show (F,,F,,) versus the number N of configurations of noise.
The error shows a typical 1/ VN behavior. The numerical results
differ from the analytical result by about 1%. The remaining
error is due to finite AT and finite 75,,. It should be noted that
(F,..F,.) s a local observable in momentum space.

Numerically more challenging is the determination of a non-
local observable, like the Wilson loop. For a given oriented
closed curve C, the Wilson loop along the curve Cis defined via

W, = exp [ig . dxMA"(x)]. (38)
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FIG. 3. U(1)-model. Expectation value {F,.(K) F,.(—k)} versus size of
ensemble of Gaussian noise. Full line: analytical result, Eq. (35).

In goantum chromodynamics (QCD), the standard theory of
sirong interactions, the Wilson loop corresponds to the creation
of a quark-antiquark pair, the propagation of this ‘“*meson’’
and the destruction of the quark—antiguark pair. It plays the
role of an order parameter for confinement. For the (1) theory
the Wilson loop can be computed analyticaliy. Let the curve
C be given by a rectangle of size R X T, being located in a
two-dimensional piane. Then the Euclidean Wilson loop ex-
pressed in momentum space can be written

_ =g d% KK 2sintRDY
(WP) - EXP [ 2 J*A (277)4 kz kl

(2 sin(k, m))2
k, '

Here A denotes a high momentum cutoff, necessary to regular-
ize the otherwise divergent integral.

We have chosen to simulate the Wilson lcop being a non-
local observable because it should be a more stringent test than
(FF ). Second, the g dependence of Wy (Eq. (38)) means a
more rapidly oscillating function for large g. From this we
expect that the larger g is, the more difficult will it be to
obtain agreement between numerical and analytical results. We
considered Wp(/, /}, where [ X J denotes the size of the rectan-
gular loop measured in units of the lattice spacing. Note that
the gauge field configurations generated by the action are inde-
pendent from the coupling parameter g, which appears in the
observable W,. Consequently different size Wilson loops and
Wilson loops for different values of g all correspond to the
same gauge field configurations, only the observables differ.
In this sense the statistical errors are correlated. The Wilson
loop seems to be more sensitive than (F,.F,..}. When integrating
the Langevin equation, if we integrate beyond the region of

(39)
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FIG.4. {/(1)-model. Wilson loop W(J, J) versus coupling constant g; At =
Topa! 100. Full line: analytical result, Eq. (39).

stability, then fluctuations occur in the solution. These fluctua-
tions are more important for non-local observables. In Figs. 4
and 5, we show the expectation value of the Wilson loop opera-
tor for different loop sizes and for different stochastic time
steps. The laitice size is 6*. The number of configurations of
noise is ¥ = 256. In order to equilibrate the error due to finite
Tina (8€€ Eq. (33)) we have chosen 75, depending on the lattice
momentum:; Tgy = 10/47. For a given value value of 1, Fig.
4 corresponds to AT = 7,4/100, while Fig. 5 corresponds to
A7 = 73,4/150. The lattice spacing Ak is as in Fig. 3. We have

1.00 e . . .
i 2
080 |- "pi |
?\Ph W(1,1)

060 | 1
;.: W(1,2) (
= EII

040 }II .

3 e H

020 | f{ {

]t

0‘009.9 1.‘0 z.lo 3; 40

gl

FIG. 5. Same as Fig. 4, but At = 7,,/150.
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also plotted the result of the analytic expression (39). We make
the following observations:

(a) The lattice size (6%) limits the size of the loops, which
can be measured in a meaningful way. As a general rule, the
loop size should not exceed half of the lattice size. Both, Figs.
4 and 5 show that the smaller the loop (the smallest one being
We(1, 1)), the better is the agreement with the analytic expres-
sion. This is a typical finite size effect of the lattice.

(b} Both, Figs. 4 and 5 also show that the smaller the value
of g, the better is the agreement with the analytic expression.
Larger values of g correspond to an observable W, with more
rapid osciliations as a function of momentum. As can be seen
from Eq. (39), important contributions to W, come from the
region around k¥ = 0. Thus the origin of these discrepancies
should be effects due to finite lattice resolution Ak.

{c) Comparing Figs. 4 and 5, we observe that the simulation
with smaller A7 gives results closer to the analytic expression.
This is in agreement with the behavior discussed for the scalar
¢* theory in Secion 5.

7. CONCLUSION

Our study of the scalar ¢}, theory and the U/{1),,, gauge
theory shows the feasibility of doing lattice simulations on a
small momentum lattice. The second-order scheme turned out
to be by far more appropriate because of its greater accuracy
and speed. For both, the propagator of the ¢ model near the
critical point, where the renormalized mass goes to zero, as
well for the Wiison loop in U(1) model, the small momentum
behavior (k = () plays an important role. For the ¢* theory we
have identified a region of stability {plateau) in the stochastic
time parameter 74, . We have studied the stability Qf the results
under variation of A7 in the simulation of the scalar ¢* theory
and for the Wilson loop in the U(1) gauge theory. The knowl-
edge of the stability region is very important for simulations
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of theories like SU(2) and SU(3). For these models, the time
needed for generating equlibrium configurations is much larger
than for the U(1)-model. How about the usefulness of the
momentum lattice regularization and the efficiency of Langevin
updating on a momentum lattice? We have given two examples,
where the small momenturn behavior plays an important role
for physics: the propagator of a massive model near the critical
point and, second, the Wilson loop for a massless model. It
turns out for the scalar mode] that the critical behavior can be
obtained quite well on a small momentum lattice. The disadvan-
tage of updating on 2 momentum lattice compared to a space—
time lattice is the property of a non-local action, which makes
each update more costly in computing time. The most efficient
way of doing the updating is by going via fast Fourier transform
to space—time, doing the updating using the locality of the
action and then going back by fast Fourier transform. Thus the
effort for updating goes like V tog V on the momentum lattice
compared to V on a space—time lattice (V being the. lattice
volume). .
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